硝酸塩の溶解度（第11報）

硝酸アンモニウム-塩化アンモニウム-水系および塩化ナトリウム
（硝酸ナトリウムまたは塩化アンモニウム）-水3成分系の相平衡

原 泰毅*、秋吉紀子*、織緒尚子*、中村英嗣*

互変二対塩である硝酸アンモニウム-塩化アンモニウム-水系の平衡状態図を作成するために必要な3種の3成分系状態図を残留法によって作成した。

-20℃～60℃における硝酸アンモニウム-塩化アンモニウム-水3成分系の状態図を作成し、3成分共融組成（wt%）としてNH₄NO₃ 27.1, NH₄Cl 12.8, H₂O 60.1を得。共融温度は-23.3℃であった。

次に、-20℃～40℃における硝酸ナトリウム-塩化ナトリウム-水の系と、塩化アンモニウム-塩化ナトリウム-水の2つの3成分系について同様な実験を行った。前者の3成分共融組成はNaNO₃ 19.6, NaCl 16.4, H₂O 64.0℃で、共融温度は-23.3℃であった。後者については、共融組成がNH₄Cl 7.9, NaCl 19.1, H₂O 73.0℃で、共融温度は-24.5℃であった。

これらの系で存在する固相は、0.1℃以下の温度で塩化ナトリウムのみが水塩（NaCl・2H₂O）として安定であり、他の塩の含水塩や無水塩の存在は認められなかった。

1. 縮 言
硝酸アンモニウム（以下ANと略記）系溶液には、その用途に応じて様々な酸化剤や鉄塩剤が用いられている。水溶液には、発熱の際のマグネシウムや銅などの着火を抑制するために、陰極消炎剤として塩化ナトリウム（以下SCと略記）が加えられる。

現在は、これらのことにより水を加えた安全な塩が使用されているが、この含水塩やエマルション塩の脱水安定性、特に、低温における緩衝汁出による特性の変化などが問題となる。本研究はAN-SC-水4成分系の相関溶度を理解するための相平衡状態図を作成するために必要な3成分系状態図の作成を目的としたものである。

上記の4成分系状態図を作成するためには、次の4つの系の3成分系等温不変点の組成が必要である。

(A) NH₄NO₃—NaNO₃—H₂O
(B) NH₄NO₃—NH₄Cl—H₂O
(C) NaNO₃—NH₄Cl—H₂O
(D) NH₄Cl—NaCl—H₂O

1990年4月13日受理
*九州工業大学工学部応用化学教室
〒804 北九州市戸畑区仙水町1-1
TEL 093-871-3911 内線446

Kōgō Kayaku, Vol. 52, No. 4, 1991 —239—
作り、ときどきふりまぜながら恒温槽中に4時間以上放置し、飽和溶液および固相を含む溶液とを分析する方法である。3成分系共融温度の決定には冷却曲線法を用いた。

残留法における各値の濃度はNH₄⁺イオン濃度をNaOH溶液を用いた導電率測定法、NO₃⁻イオン濃度を分光度度法(301nm)およびNa⁺イオン濃度を原子吸光法(330.23nm)によって測定して求めた。いずれの系においても、水分量は全量を硫酸液との差として求めめた。

3. 結果および考察
3.1 AN-AC-水3成分系の平衡

<table>
<thead>
<tr>
<th>Temp (℃)</th>
<th>NH₄NO₃ (Wt.%)</th>
<th>NH₄Cl (Wt.%)</th>
<th>H₂O (Wt.%)</th>
<th>NH₄NO₃ (Wt.%)</th>
<th>NH₄Cl (Wt.%)</th>
<th>H₂O (Wt.%)</th>
<th>Solid phase*</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0</td>
<td>32.0</td>
<td>68.0</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td>12.8</td>
<td>27.1</td>
<td>60.1</td>
<td>6.3</td>
<td>63.6</td>
<td>30.1</td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td>23.8</td>
<td>23.2</td>
<td>53.1</td>
<td>14.7</td>
<td>56.3</td>
<td>29.0</td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td>38.7</td>
<td>17.7</td>
<td>43.7</td>
<td>22.9</td>
<td>51.5</td>
<td>25.6</td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td>65.3</td>
<td>10.0</td>
<td>24.8</td>
<td>59.2</td>
<td>33.0</td>
<td>7.8</td>
<td>AC+AN</td>
</tr>
<tr>
<td></td>
<td>68.1</td>
<td>5.5</td>
<td>26.4</td>
<td>74.2</td>
<td>5.1</td>
<td>20.7</td>
<td>AN</td>
</tr>
<tr>
<td></td>
<td>72.3</td>
<td>0</td>
<td>27.7</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>AN</td>
</tr>
</tbody>
</table>

-10
	0	21.0	79.0	AC
	14.5	17.1	68.5	8.0	52.3	39.7	AC
	29.8	12.9	57.3	16.8	49.2	34.0	AC
	37.0	10.4	52.6	32.8	39.7	27.5	AC+AN
	40.8	4.6	54.6	65.3	3.2	31.5	AN
	44.2	0	55.8	AN
	0	10.7	89.3	H₂O
	6.7	8.9	84.4	5.1	6.6	88.4	H₂O
	14.0	5.1	80.9	8.3	3.2	88.5	H₂O
	24.6	0	75.4	H₂O

-20
	14.9	15.3	69.9	9.1	48.9	42.0	AC
	22.4	13.0	64.9	13.3	45.9	40.8	AC
	11.7	16.0	72.4	3.2	22.6	74.2	AC+H₂O
	29.3	11.2	59.5	21.1	43.4	35.5	AC+AN
	29.8	10.9	59.4	23.4	43.9	32.7	AC+AN
	33.2	6.4	60.3	71.0	2.7	26.3	AN
	34.3	5.4	60.3	41.8	3.1	55.1	AN+H₂O
	27.4	8.5	64.0	19.5	6.0	74.5	H₂O
	20.5	11.9	67.7	15.1	9.6	75.3	H₂O

*AC: NH₄Cl, AN: NH₄NO₃
Invariant point data for the ternary system of NH₄NO₃-NH₄Cl-H₂O
Temperature: -22.3℃
Composition (Wt. %): NH₄NO₃ 27.1, NH₄Cl 12.8, H₂O 60.1

---240---
この系の熱的温度における溶解度曲線をFig. 2に示した。この図には著者らが測定した全データをプロットした。3相の等温断面を結ぶ曲線（破線）の交点より3成分共融組成を予測し、冷却曲線法によって決定した。その結果、共融組成はAN 27.1, AC 12.8, H₂O 60.1 (wt%) であり、共融温度は−22.3℃であった。

Table 2 Solubility data for the ternary system NaNO₃-NaCl-H₂O

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Liquid phase (Wt.%)</th>
<th>Wet solid phase (Wt.%)</th>
<th>Solid phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NaCl</td>
<td>NaNO₃</td>
<td>H₂O</td>
</tr>
<tr>
<td>40</td>
<td>51.5</td>
<td>48.5</td>
<td>...</td>
</tr>
<tr>
<td>6.3</td>
<td>45.0</td>
<td>48.7</td>
<td>2.5</td>
</tr>
<tr>
<td>9.2</td>
<td>41.1</td>
<td>49.7</td>
<td>7.2</td>
</tr>
<tr>
<td>10.6</td>
<td>38.6</td>
<td>50.8</td>
<td>56.6</td>
</tr>
<tr>
<td>14.2</td>
<td>29.1</td>
<td>56.7</td>
<td>58.5</td>
</tr>
<tr>
<td>17.6</td>
<td>20.1</td>
<td>62.3</td>
<td>65.0</td>
</tr>
<tr>
<td>21.5</td>
<td>10.6</td>
<td>67.9</td>
<td>66.8</td>
</tr>
<tr>
<td>27.1</td>
<td>0</td>
<td>72.9</td>
<td>...</td>
</tr>
<tr>
<td>−10</td>
<td>20.0</td>
<td>80.0</td>
<td>...</td>
</tr>
<tr>
<td>4.0</td>
<td>14.0</td>
<td>82.0</td>
<td>3.5</td>
</tr>
<tr>
<td>9.2</td>
<td>6.7</td>
<td>84.1</td>
<td>7.0</td>
</tr>
<tr>
<td>12.7</td>
<td>0</td>
<td>87.3</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>40.1</td>
<td>59.9</td>
<td>...</td>
</tr>
<tr>
<td>4.9</td>
<td>33.9</td>
<td>61.2</td>
<td>2.4</td>
</tr>
<tr>
<td>11.2</td>
<td>26.5</td>
<td>62.3</td>
<td>4.3</td>
</tr>
<tr>
<td>17.5</td>
<td>20.3</td>
<td>62.2</td>
<td>15.7</td>
</tr>
<tr>
<td>19.5</td>
<td>14.2</td>
<td>66.3</td>
<td>21.9</td>
</tr>
<tr>
<td>20.9</td>
<td>8.6</td>
<td>70.5</td>
<td>23.1</td>
</tr>
<tr>
<td>25.2</td>
<td>0</td>
<td>74.8</td>
<td>...</td>
</tr>
</tbody>
</table>

*SN:NaNO₃, SC:NaCl, SCH:NaCl·2H₂O
Invariant point data for the ternary system of NaNO₃-NaCl-H₂O
Temperature: −23.3°C
Composition (Wt.%): NaNO₃ 19.6, NaCl 16.4, H₂O 64.0

Kögyō Kayaku, Vol. 52, No. 4, 1991 —241—
た。先に述べたPavlovらの結果は夫々27.0, 11.4, 61.1％と-22℃である。

3.2 SN-SC-水3成分系の平衡

先に述べたように、この系に関するデータは比較的多くの研究者によって報告5)～7)されているので、4成分系の作図を計画した40℃および-10℃の結果だけをTable 2に示し、Fig.3およびFig.4に図示した。

40℃においては、対応線は三角形の頂点BおよびCに集まるので、この温度で存在する固相はSNおよびSCである。一方、-10℃においては頂点AおよびBと辺AC上の一・点に集まり、存在する固相は水およびSNとSCの2水塩（SN 61.9%, H2O 38.1%, 以下SCHと略記）である。Khitrova7)によるSC-水2成分系平衡状態図によると、包晶点が0.15℃で、この温度以下での安定な固相は水とSCHであるから、3成分系においても約0℃以下ではSCHとなる。等温不变点の組成はTable 2の3行目と16行目の組成であり、40℃のLeatherらの値（SN 37.8, SC 11.1, H2O 51.1%）とは少し異なり、-10℃のKhitrova7)の値（SN 21, SC 16.5, H2O 62.5%）とは類似している。

40℃および-10℃以外の詳細なデータは省略したが、種々の温度で測定した溶解度曲線をFig.5に示した。前項と同様にして3成分共融点を決定し、共融組成としてSN 19.6, SC 16.4, H2O 64.0%を得、共融温度は-23.3℃で、先のKhitrova7)の-24.4℃より少し高い結果を得た。

3.3 AC-SC-水3成分系の平衡

AC-SC-水3成分系の平衡状態における溶解度データをTable 3に示し、この中から-10℃における状態図をFig.6に示した。この系における固相は前項と同様に水と1種の塩（AC）と1種の含水塩（SCH）であることがわかる。Fig.7には種々の温度における溶解度曲線を示した。40℃における等温不变点が他の温度のものとかけはなれた点にあたるのは、SCの固
Table 3 Solubility data for the ternary system NH₄Cl - NaCl - H₂O

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Liquid phase(Wt.%</th>
<th>Wet solid phase(Wt.%)</th>
<th>Solid phase*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NaCl</td>
<td>NH₄Cl</td>
<td>H₂O</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>31.8</td>
<td>68.2</td>
</tr>
<tr>
<td>7.3</td>
<td>25.0</td>
<td>67.7</td>
<td>5.4</td>
</tr>
<tr>
<td>14.1</td>
<td>20.4</td>
<td>65.5</td>
<td>28.6</td>
</tr>
<tr>
<td>17.6</td>
<td>14.1</td>
<td>68.3</td>
<td>40.9</td>
</tr>
<tr>
<td>21.1</td>
<td>8.7</td>
<td>70.2</td>
<td>38.6</td>
</tr>
<tr>
<td>27.1</td>
<td>0</td>
<td>72.9</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>0</td>
<td>12.6</td>
<td>87.4</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>9.2</td>
<td>86.7</td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>4.3</td>
<td>86.3</td>
</tr>
<tr>
<td></td>
<td>12.7</td>
<td>0</td>
<td>87.3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>20.5</td>
<td>79.5</td>
</tr>
<tr>
<td></td>
<td>9.1</td>
<td>14.8</td>
<td>76.1</td>
</tr>
<tr>
<td></td>
<td>15.3</td>
<td>11.8</td>
<td>72.9</td>
</tr>
<tr>
<td></td>
<td>20.6</td>
<td>8.6</td>
<td>70.8</td>
</tr>
<tr>
<td></td>
<td>20.9</td>
<td>7.6</td>
<td>71.5</td>
</tr>
<tr>
<td></td>
<td>23.0</td>
<td>4.3</td>
<td>72.7</td>
</tr>
<tr>
<td></td>
<td>25.2</td>
<td>0</td>
<td>74.8</td>
</tr>
<tr>
<td>-15</td>
<td>0</td>
<td>15.6</td>
<td>84.4</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>12.3</td>
<td>82.7</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>7.2</td>
<td>82.6</td>
</tr>
<tr>
<td></td>
<td>16.8</td>
<td>0</td>
<td>83.2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>20.0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>14.1</td>
<td>76.9</td>
</tr>
<tr>
<td></td>
<td>15.1</td>
<td>11.0</td>
<td>73.9</td>
</tr>
<tr>
<td></td>
<td>20.1</td>
<td>8.5</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>22.7</td>
<td>3.5</td>
<td>73.8</td>
</tr>
<tr>
<td></td>
<td>24.3</td>
<td>0</td>
<td>75.7</td>
</tr>
<tr>
<td>-20</td>
<td>21.6</td>
<td>0</td>
<td>78.4</td>
</tr>
<tr>
<td></td>
<td>17.4</td>
<td>4.5</td>
<td>78.1</td>
</tr>
<tr>
<td></td>
<td>14.1</td>
<td>8.0</td>
<td>77.9</td>
</tr>
<tr>
<td></td>
<td>11.9</td>
<td>10.2</td>
<td>77.9</td>
</tr>
<tr>
<td></td>
<td>6.7</td>
<td>14.4</td>
<td>78.9</td>
</tr>
<tr>
<td></td>
<td>11.3</td>
<td>12.1</td>
<td>76.6</td>
</tr>
<tr>
<td></td>
<td>17.1</td>
<td>9.9</td>
<td>73.0</td>
</tr>
<tr>
<td></td>
<td>19.7</td>
<td>8.3</td>
<td>72.0</td>
</tr>
<tr>
<td></td>
<td>21.0</td>
<td>5.7</td>
<td>73.3</td>
</tr>
<tr>
<td></td>
<td>22.3</td>
<td>3.0</td>
<td>74.7</td>
</tr>
<tr>
<td></td>
<td>23.2</td>
<td>0</td>
<td>76.8</td>
</tr>
</tbody>
</table>

*AC : NH₄Cl, SC : NaCl·SC; NaCl·2H₂O
Invariant point data for the ternary system of NH₄Cl - NaCl - H₂O
Temperature : -24.5°C
Composition (Wt.%): NH₄Cl 7.9, NaCl 19.1, H₂O 73.0

Kögyő Kayaku, Vol. 52, No. 4, 1991 —243—
相が40℃では無水塩、0℃以下では2水塩となっているからである。この系の3成分共融点は、SC 19.1、AC 7.9、H₂O 73.0%、-24.5℃であった。

4. 結論

AN−AC−水 3成分の状態図を60℃から共融温度までの範囲で作成し、SH−SC−水およびAC−SC−水の2つの3成分系については40℃から共融温度までの範囲で状態図を作成した。

これらの系においては、0℃以下の温度でSCが2水塩を作るほか、他の2つの塩、固溶体あるいは含水
塩は認められなかった。

文 献
2) 中村英勲, 原 泰敏, 長手英世, 工業火薬, 43, 63 (1982)
6) E. Cornec and A. Chretien, Caliche, 6, 358 (1924)
8) M. M. Jarlykoff, ibid., 7, 902 (1934)
10) 浜口 拓, 覚田六郎, 遠藤信也, 分析化学, 7, 409 (1958)
Solubilities of Some Nitrates in Aqueous Solution (XI)

The Ternary Systems NH₄NO₃-NH₄Cl-H₂O and NaCl-
(NaNO₃ or NH₄Cl)-H₂O

by Yasutake HARA*, Noriko AKIYOSHI*, Naoko NAWACHI* and Hidetsugu NAKAMURA*

The phase diagram for the ternary system ammonium nitrate (AN)–ammonium chloride (AC)–water was determined from 60°C to the melting point. The ternary eutectic temperature, measured for a mixture containing 27.1, 12.8 and 60.1 wt. % of AN, AC and
H₂O respectively was found to be −22.3°C.

For the ternary system sodium nitrate (SN)–sodium chloride (SC)–water and AC-SC–water, the phase diagrams were also determined in the temperature range of 40°C to melting point. The ternary eutectic compositions and temperatures were found to be SN 19.6, SC 16.4, H₂O 64.0, wt. % −23.3°C for the former and AC 7.9, SC 19.1, H₂O 73.0 wt. %, −24.5°C for the latter respectively.

The results indicated no complex salt, solid solution, or hydrate formation except NaCl
• 2H₂O at the temperature below about 0°C.

(*Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Sensui-machi, Tobata-ku, Kitakyushu-shi, Japan)